Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The DarkSide-20k dark matter experiment, currently under construction at LNGS, features a dual-phase time projection chamber (TPC) with a ∼ 50 t argon target from an underground well. At this scale, it is crucial to optimise the argon flow pattern for efficient target purification and for fast distribution of internal gaseous calibration sources with lifetimes of the order of hours. To this end, we have performed computational fluid dynamics simulations and heat transfer calculations. The residence time distribution shows that the detector is well-mixed on time-scales of the turnover time (∼ 40 d). Notably, simulations show that despite a two-order-of-magnitude difference between the turnover time and the half-life of83mKr of 1.83 h, source atoms have the highest probability to reach the centre of the TPC 13 min after their injection, allowing for a homogeneous distribution before undergoing radioactive decay. We further analyse the thermal aspects of dual-phase operation and define the requirements for the formation of a stable gas pocket on top of the liquid. We find a best-estimate value for the heat transfer rate at the liquid-gas interface of 62 W with an upper limit of 144 W and a minimum gas pocket inlet temperature of 89 K to avoid condensation on the acrylic anode. This study also informs the placement of liquid inlets and outlets in the TPC. The presented techniques are widely applicable to other large-scale, noble-liquid detectors.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Aria is a plant hosting a$${350}\,\hbox {m}$$ cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of$${^{39}\hbox {Ar}}$$ in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed,$${^{39}\hbox {Ar}}$$ is a$$\beta $$ -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant.more » « less
-
null (Ed.)Abstract Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neutral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science.more » « less
An official website of the United States government
